Редактирование: Климат

Перейти к навигации Перейти к поиску
Внимание: Вы не вошли в систему. Ваш IP-адрес будет общедоступен, если вы запишете какие-либо изменения. Если вы войдёте или создадите учётную запись, её имя будет использоваться вместо IP-адреса, наряду с другими преимуществами.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий ниже, чтобы убедиться, что это нужная вам правка, и запишите страницу ниже, чтобы отменить правку.

Текущая версия Ваш текст
Строка 1: Строка 1:
'''Климат''' (''франц.'' climat, от лат. clima – область, климат, от греч. ϰλίμα, род. п. ϰλίματος – наклон, область<ref name="БРЭ">[https://bigenc.ru/physics/text/2624409 ''Мохов И. И.'' КЛИМАТ // Большая российская энциклопедия. Электронная версия (2016). 23.07.2019.]</ref>) — локальный климат в узком смысле слова — совокупность атмосферных условий за многолетний период, свойственных тому или иному месту в зависимости от его географической обстановки, в таком понимании климат является одной из физико-географических характеристик местности; глобальный климат в широком смысле — статистическая совокупность состояний, проходимых системой «атмосфера — океан — суша — криосфера — биосфера» за периоды времени в несколько десятилетий, в таком понимании климат есть понятие глобальное.<ref name="Михеев2009">[http://window.edu.ru/resource/878/71878/files/ulstu2010-145.pdf ''Михеев В. А.'' Климатология и метеорология. — Ульяновск: Ульяновский государственный технический университет, 2009.]</ref>
'''Климат''' (франц. climat, от лат. clima – область, климат, от греч. ϰλίμα, род. п. ϰλίματος – наклон, область<ref name="БРЭ">[https://bigenc.ru/physics/text/2624409 ''Мохов И. И.'' КЛИМАТ // Большая российская энциклопедия. Электронная версия (2016). 23.07.2019.]</ref>) — локальный климат в узком смысле слова — совокупность атмосферных условий за многолетний период, свойственных тому или иному месту в зависимости от его географической обстановки, в таком понимании климат является одной из физико-географических характеристик местности; глобальный климат в широком смысле — статистическая совокупность состояний, проходимых системой «атмосфера — океан — суша — криосфера — биосфера» за периоды времени в несколько десятилетий, в таком понимании климат есть понятие глобальное.<ref name="Михеев2009">[http://window.edu.ru/resource/878/71878/files/ulstu2010-145.pdf ''Михеев В. А.'' Климатология и метеорология. — Ульяновск: Ульяновский государственный технический университет, 2009.]</ref>


Климат, являясь одной из физико-географических характеристик среды, окружающей человека, оказывает решающее влияние на хозяйственную деятельность людей: на специализацию сельского хозяйства, размещение промышленных предприятий, воздушный, водный и наземный транспорт и т. п.<ref name="Хромов2004">''Хромов С. П.'' Метеорология и климатология : учебник/ С. П. Хромов, М. А, Петросянц - 6-е изд., перераб. доп. - М. : Изд-во МГУ, Изд-во «Колос», 2004. - 582 с.</ref>
Климат, являясь одной из физико-географических характеристик среды, окружающей человека, оказывает решающее влияние на хозяйственную деятельность людей: на специализацию сельского хозяйства, размещение промышленных предприятий, воздушный, водный и наземный транспорт и т. п.<ref name="Хромов2004">''Хромов С. П.'' Метеорология и климатология : учебник/ С. П. Хромов, М. А, Петросянц - 6-е изд., перераб. доп. - М. : Изд-во МГУ, Изд-во «Колос», 2004. - 582 с.</ref>
Строка 29: Строка 29:
Изменения климата обусловлены рядом факторов: изменением светимости Солнца, вариациями параметров орбиты Земли, тектоническими процессами, в том числе [[тектоника плит|тектоникой плит]], вулканическими извержениями, изменением состава атмосферы. Для восстановления произошедших изменений климата используются различные методы палеоклиматологии (см. в статье [[Палеогеография]]). Так, по содержанию пузырьков воздуха в ледовых кернах, полученных на российской антарктической станции «Восток» и на европейской антарктической станции (проект EPICA), была проведена реконструкция изменений климата за последние 800 тысяч лет. В частности, было установлено изменение содержания в атмосфере парниковых газов (диоксида углерода и метана) и аэрозолей, а также связь этих изменений с изменениями температуры.
Изменения климата обусловлены рядом факторов: изменением светимости Солнца, вариациями параметров орбиты Земли, тектоническими процессами, в том числе [[тектоника плит|тектоникой плит]], вулканическими извержениями, изменением состава атмосферы. Для восстановления произошедших изменений климата используются различные методы палеоклиматологии (см. в статье [[Палеогеография]]). Так, по содержанию пузырьков воздуха в ледовых кернах, полученных на российской антарктической станции «Восток» и на европейской антарктической станции (проект EPICA), была проведена реконструкция изменений климата за последние 800 тысяч лет. В частности, было установлено изменение содержания в атмосфере парниковых газов (диоксида углерода и метана) и аэрозолей, а также связь этих изменений с изменениями температуры.


Палеореконструкции древних климатов отличаются низкой достоверностью. Есть свидетельства того, что уже в докембрии (более 530 млн. лет назад) на поверхности Земли существовала жидкая вода. Приток солнечной радиации для того периода оценивается примерно на треть меньше современного, что могло компенсироваться более высоким содержанием парниковых газов (прежде всего диоксида углерода и метана) в атмосфере. Более надёжны данные реконструкций последнего, пермского, периода палеозоя. Есть основания полагать, что суперконтинент Гондвана в высоких южных широтах в конце палеозоя (около 260 млн. лет назад) был покрыт льдами – так называемое пермское оледенение. Мезозой был очень тёплым (среднегодовая температура Земли была на 10–15 °C выше современной). При этом различие температур между экватором и полярными широтами было существенно меньше, чем сейчас (около 15 °C у поверхности, против современного около 46 °C). Нет свидетельств наличия льда в мезозое, приповерхностная температура была положительной даже зимой во внутриконтинентальных регионах. В позднем мезозое (около 100 млн. лет назад) существовали проливы между Северной и Южной Америкой, между Африкой и Евразией, позволявшие формировать интенсивное циркумэкваториальное течение. Более слабые меридиональные градиенты температуры должны были приводить к менее интенсивной, чем сейчас, циркуляции атмосферы. Пассаты и среднеширотный пояс западных ветров должны были распространяться в более высокие широты. После мезозоя климат в целом становится более холодным. В олигоцене (около 30 млн. лет назад) сформировался Антарктический ледовый щит. В позднюю дочетвертичную эпоху (плиоцен) происходило замерзание Арктики.
Палеореконструкции древних климатов отличаются низкой достоверностью. Есть свидетельства того, что уже в докембрии (более 530 млн. лет назад) на поверхности Земли существовала жидкая вода. Приток солнечной радиации для того периода оценивается примерно на треть меньше современного, что могло компенсироваться более высоким содержанием парниковых газов (прежде всего диоксида углерода и метана) в атмосфере. Более надёжны данные реконструкций последнего, пермского, периода палеозоя. Есть основания полагать, что суперконтинент Гондвана в высоких южных широтах в конце палеозоя (около 260 млн. лет назад) был покрыт льдами – так называемое пермское оледенение. Мезозой был очень тёплым (среднегодовая температура Земли была на 10–15 °C выше современной). При этом различие температур между экватором и полярными широтами было существенно меньше, чем сейчас (около 15 °C у поверхности, против современного около 46 °C). Нет свидетельств наличия льда в мезозое, приповерхностная температура была положительной даже зимой во внутриконтинентальных регионах. В позднем мезозое (около 100 млн. лет назад) существовали проливы между Северной и Южной Америкой, между Африкой и Евразией, позволявшие формировать интенсивное циркумэкваториальное течение. Более слабые меридиональные градиенты температуры должны были приводить к менее интенсивной, чем сейчас, циркуляции атмосферы. Пассаты и среднеширотный пояс западных ветров должны были распространяться в более высокие широты. После мезозоя климат в целом становится более холодным. В олигоцене (около 30 млн. лет назад) сформировался Антарктический ледовый щит. В позднюю дочетвертичную эпоху (плиоцен) происходило замерзание Арктики.  
 
Начало четвертичного периода (плейстоцен, менее 1,8 млн. лет назад) характеризовалось последовательными оледенениями ([[ледниковые эпохи|ледниковыми эпохами]] – гляциалами) и межгляциалами. Периоды этих ледниковых циклов соответствуют периодам изменений параметров орбиты Земли (так называемые циклы Миланковича). В начале плейстоцена доминировали климатические изменения с периодом около 40 тыс. лет (характерным для вариаций наклона оси вращения Земли относительно плоскости эклиптики). Позднее преобладали изменения с периодом около 100 тысяч лет (характерным для вариаций эксцентриситета орбиты Земли). Среди ледниковых циклов позднего плейстоцена выделяется тёплый период (около 125 тысяч лет назад), называемый микулинским (Eemian) межледниковьем, с большими сезонными вариациями температуры в Северном полушарии. Уровень моря в это время должен был быть на 4–6 м выше, чем сейчас, что в значит. степени объясняется таянием ледового щита Гренландии. Последовавшее за этим общее понижение температуры привело к развитию последнего оледенения с максимумом около 21 тысяч лет назад. В это время ледовые щиты покрывали северную часть Европы и Северной Америки, а также южную часть Южной Америки. Уровень океана был примерно на 120 м ниже современного. Глобальный климат был примерно на 5 °C холоднее современного и суше. Период 18–11 тысяч лет назад характеризовался постепенным потеплением, прерванным около 12 тысяч лет назад. Последнее похолодание было вызвано опреснением поверхностного слоя Северной Атлантики из-за значительного притока пресной воды от тающего Лаврентийского ледового щита (на севере Севере Америки). Подобное опреснение, в свою очередь, должно приводить к ослаблению [[термохалинная циркуляция|термохалинной циркуляции]] океана и соответствующему уменьшению притока тёплой воды из низких широт в высокие. Период после окончания последнего оледенения (11,5 тысяч лет назад) и до настоящего времени называют голоценом. Около 6 тысяч лет назад (в середине голоцена) температура была более высокой по сравнению с серединой 20 века — на 4 °C выше в высоких северных широтах летом.
Начало четвертичного периода (плейстоцен, менее 1,8 млн. лет назад) характеризовалось последовательными оледенениями ([[ледниковые эпохи|ледниковыми эпохами]] – гляциалами) и межгляциалами. Периоды этих ледниковых циклов соответствуют периодам изменений параметров орбиты Земли (так называемые циклы Миланковича). В начале плейстоцена доминировали климатические изменения с периодом около 40 тыс. лет (характерным для вариаций наклона оси вращения Земли относительно плоскости эклиптики). Позднее преобладали изменения с периодом около 100 тысяч лет (характерным для вариаций эксцентриситета орбиты Земли). Среди ледниковых циклов позднего плейстоцена выделяется тёплый период (около 125 тысяч лет назад), называемый микулинским (Eemian) межледниковьем, с большими сезонными вариациями температуры в Северном полушарии. Уровень моря в это время должен был быть на 4–6 м выше, чем сейчас, что в значит. степени объясняется таянием ледового щита Гренландии. Последовавшее за этим общее понижение температуры привело к развитию последнего оледенения с максимумом около 21 тысяч лет назад. В это время ледовые щиты покрывали северную часть Европы и Северной Америки, а также южную часть Южной Америки. Уровень океана был примерно на 120 м ниже современного. Глобальный климат был примерно на 5 °C холоднее современного и суше. Период 18–11 тысяч лет назад характеризовался постепенным потеплением, прерванным около 12 тысяч лет назад. Последнее похолодание было вызвано опреснением поверхностного слоя Северной Атлантики из-за значительного притока пресной воды от тающего Лаврентийского ледового щита (на севере Севере Америки). Подобное опреснение, в свою очередь, должно приводить к ослаблению [[термохалинная циркуляция|термохалинной циркуляции]] океана и соответствующему уменьшению притока тёплой воды из низких широт в высокие. Период после окончания последнего оледенения (11,5 тысяч лет назад) и до настоящего времени называют голоценом. Около 6 тысяч лет назад (в середине голоцена) температура была более высокой по сравнению с серединой 20 века — на 4 °C выше в высоких северных широтах летом.


Строка 41: Строка 40:
Давление воздуха.jpg|Давление воздуха
Давление воздуха.jpg|Давление воздуха
</gallery>
</gallery>
Более надёжные данные о климате получают с помощью метеорологических инструментов. Такие данные имеются для Центральной Англии с 17 века, а для Земли в целом – с середины 19 века. В настоящее время средняя глобальная температура у поверхности Земли, по данным, полученным сетью метеорологических станций, составляет около 14 °C, при этом Северное полушарие теплее Южного более чем на 1 °C. Среднегодовая температура изменяется в диапазоне от 25 °C и более в тропических широтах до –15…–20 °C в арктических широтах и –40…–50 °C в антарктических широтах. Региональные особенности температуры связаны с распределением суши и океанов, орографией, центрами действия атмосферы (например, Азорского антициклона или Исландского и Алеутского циклонов, а зимой – Азиатского антициклона), с [[океанические течения|океаническими течениями]] типа Гольфстрим и Куросио, эффектами урбанизации и т. д. Среднегодовые приповерхностные температуры минимальны в Антарктиде (ок. –60 °C), а максимальны в пустыне Сахара в Северной Африке (около 30 °C) и тропических широтах Индийского океана и западной части Тихого океана. В вариациях климата особенно ярко проявляется годовой ход климатических характеристик. Амплитуда годового хода приповерхностной температуры составляет около 7 °C для Северного полушария в целом, а для Южного полушария (на 80% покрытого океанами) – около 3 °C. Наибольшие амплитуды внутригодовых вариаций температуры у поверхности характерны для внетропических широт над континентами (порядка 10–20 °C) и достигают максимума (около 35 °C) в Восточной Сибири.
[[Файл:Годовое количество осадков.jpg|700px|мини|центр|Годовое количество осадков]]Годовой ход температуры над океанами по сравнению с континентами запаздывает в среднем на 1 месяц. Это отражает большую термическую инерцию деятельного слоя океана по сравнению с деятельным слоем суши. С различием теплоёмкостей океанов и континентов связаны также муссоны, являющиеся существенными процессами в климатической системе Земли (см. [[Муссонная циркуляция]]). В области их влияния живёт около половины населения Земли. На фоне общего доминирования годового цикла приповерхностной температуры проявляются полугодовые циклы и регулярные субсезонные аномалии. Эффекты полугодового цикла более существенно проявляются в переходные сезоны, вызывая возвратные похолодания весной и «бабье лето» осенью. Максимальные амплитуды полугодовой гармоники приповерхностной температуры отмечаются в высоких широтах над сушей (более 4 °C над Гренландией и Антарктидой), а также в тропиках (до 2 °C). Это связано с соответствующими особенностями инсоляции. Дополнительный максимум в средних широтах над континентами связан с эффектом зависимости альбедо снежного покрова от температуры.
Вариации приповерхностной температуры в течение 20 века лежат в диапазоне от около –89 °C на антарктической станции «Восток» (3488 м над уровнем моря) и около –70 °C в районе Оймякона (741 м над уровнем моря) в Якутии до максимальных летних температур над континентами в субтропическом поясе высокого давления (около 58 °C на севере Африки и в Мексике).
По метеорологическим данным, глобальная приповерхностная температура воздуха в 20 веке увеличилась на 0,6 °C. Это значительно больше, чем за предыдущие 2 тысячи лет (по палеореконструкциям). При этом в 20 веке на фоне общего повышения глобальной температуры отмечены долгопериодические вариации климата с двумя фазами потепления и некоторым общим похолоданием между ними. Так, в период 1910–40-х гг. температура повысилась на 0,3–0,4 °C, а в 1970–2000-х гг. — на 0,5–0,6 °C. Отмечено ускорение глобального потепления: на рубеже 20–21 веков глобальная среднегодовая температура у поверхности увеличивалась со скоростью около 0,2 °C за 10 лет. Потепление более заметно над сушей, чем над океаном, особенно зимой и весной в Сев. полушарии; в высоких широтах оно проявляется сильнее, чем в тропических. В процессе потепления наблюдается тенденция уменьшения годовых и суточных амплитуд температуры. Существенно, что при общем повышении температуры у поверхности Земли и в тропосфере отмечено охлаждение более высоких слоёв атмосферы – стратосферы и мезосферы.
Значимые вариации глобального климата в 20 веке связаны в том числе с солнечной и вулканической активностью. К глобальным температурным аномалиям в несколько десятых градуса (до –0,5 °C) приводили извержения вулканов Агунг на острове Бали в Индонезии (1963), Эль-Чичон в Мексике (1982), Пинатубо на Филиппинах (1991) и др.
Эффекты вулканических извержений (а также массовых пожаров на Земле и пыльных бурь на Марсе) использовались в качестве природных аналогов при оценке климатических изменений так называемой ядерной зимы. Это явление может возникнуть в результате широкомасштабной ядерной войны с выносом в стратосферу большого количества дыма и сажи от обширных пожаров, вызванных взрывом накопленных в мире ядерных боезарядов. В этом случае температура на Земле может понизиться на несколько десятков градусов.
Наряду с климатическими вариациями, вызванными внешними естественными факторами, наблюдаются собственные колебания климатической системы. Значительные аномалии глобальной приповерхностной температуры с периодичностью 2–7 лет (в среднем около 4–5 лет) связаны с явлениями Эль-Ниньо (Южное колебание): температура поверхности Тихого океана в экваториальных широтах может повышаться на 1 °C и более. Формирование Эль-Ниньо – результат взаимодействия процессов в атмосфере и океане. Сильнейшие проявления Эль-Ниньо за период инструментальных наблюдений (с середины 19 века) отмечены на рубежах 1982–83 и 1997–98 годов (лето в Южном полушарии). При этом 1998 стал самым тёплым годом на Земле за этот период. В Северном полушарии существенна роль Северо-Атлантического и Арктического колебаний (характерные периоды около десятилетия), наиболее сильно проявляющихся зимой. В различных климатических процессах проявляется квазидвухлетняя цикличность.
=== Моделирование климата ===
С последних десятилетий 20 века для выявления климатических особенностей широко используются спутниковые данные, а также данные реанализа – численных расчётов прогностических моделей общей циркуляции атмосферы и океана, которые опираются на данные различных наблюдений, в том числе спутниковых. В начале 21 века широкое распространение получили, например, данные реанализа Европейского центра среднесрочных прогнозов погоды. Полуэмпирические данные реанализа особенно полезны в условиях неполных наблюдений.
Отмеченные тенденции изменения климата в целом согласуются с расчётами, проведёнными на основе климатических моделей. Модели климата разной степени сложности являются ключевым инструментом исследований процессов, формирующих климат, и позволяют, в частности, оценить относительный вклад в изменение климата естественных и антропогенных факторов. На основе модельных расчётов делаются оценки будущих изменений климата при возможных сценариях естественных и антропогенных воздействий на климатическую систему. Так, при усилении солнечной активности потепление должно отмечаться не только у поверхности Земли и в пределах тропосферы, но и в более высоких слоях атмосферы. При увеличении содержания в атмосфере парниковых газов потепление у поверхности Земли и в тропосфере должно сопровождаться сильным охлаждением стратосферы и мезосферы. Проводились модельные расчёты изменения температуры в 20 веке – начале 21 века, в которых сравнивалось воздействие различных естественных (солнечная и вулканическая активность) и антропогенных (изменение содержания в атмосфере парниковых газов и аэрозоля, землепользование и вырубка лесов) факторов. Было установлено принципиальное различие между потеплением первой половины 20 века и потеплением последних десятилетий (конец 20 – начало 21 века). Первое потепление можно объяснить естественными причинами, связанными, в частности, с изменениями притока солнечного излучения, вулканической активности, а также собственной изменчивостью климатической системы. В потеплении последних десятилетий, согласно модельным расчётам, существенную роль играют антропогенные факторы, что связано с увеличением содержания парниковых газов в атмосфере, главным образом диоксида углерода.
=== Литература Большой российской энциклопедии ===
* Антропогенные изменения климата / Под ред. М. И. Будыко, Ю. А. Израэля. Л., 1987.
* ''Будыко М. И., Голицын Г. С., Израэль Ю. А.'' Глобальные климатические катастрофы. М., 1986
* ''Будыко М. И., Ронов А. Б., Яншин А. Л.'' История атмосферы. Л., 1985.
* ''Голицын Г. С.'' Введение в динамику планетных атмосфер. Л., 1973.
* [https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_ru.pdf Изменение климата. 2007. Доклады рабочих групп Межправительственной группы экспертов по изменению климата.]
* ''Кароль И. Л.'' Введение в динамику климата Земли. Л., 1988.
* ''Монин А. С., Шишков Ю. А.'' История климата. Л., 1979.
* ''Мохов И. И.'' Диагностика структуры климатической системы. СПб., 1993.
* ''Хромов С. П., Петросянц М. А.'' Метеорология и климатология. 7-е изд. М., 2006.
=== См. также ===
[[Глобальное изменение климата]]
=== Ссылки ===
* [https://novayagazeta.ru/articles/2020/01/06/83362-tserkov-globalnogo-potepleniya ''Юлия Латынина'' Что такое «хоккейная клюшка». История самого крупного научного фейка XX столетия] — ''Новая газета, 06.01.2020''.


== Климат в китайской медицине ==
== Климат в китайской медицине ==


:'''''Источник раздела:''' Основы китайской медицины''<ref name="Мачоча 1.21">''Мачоча Джованни.'' Основы китайской медицины. Подробное руководство для специалистов по акупунктуре и лечению травами / Джованни Мачоча; пер. с англ. В 3 т. Т. 1. — М.: Рид Элсивер, 2011. Глава 21.</ref>
:'''''Источник раздела:''' Основы китайской медицины''<ref name="Мачоча 1.21">''Мачоча Джованни'' Основы китайской медицины. Подробное руководство для специалистов по акупунктуре и лечению травами / Джованни Мачоча; пер. с англ. В 3 т. Т. 1. — М.: Рид Элсивер, 2011. Глава 21.</ref>


Наружные причины болезней — результат воздействия следующих климатических факторов:
Наружные причины болезней — результат воздействия следующих климатических факторов:
Строка 245: Строка 204:


==== {{Якорь|КМ-НХЖ-Ж}}«Жар» ====
==== {{Якорь|КМ-НХЖ-Ж}}«Жар» ====
:''Основная статья: '''[[Фа жэ]]'''''
:''Основная статья: '''[[Жар]]'''''


В данном случае речь не собственно о температуре, которая определяется термометром. Термин, который переводится как жар, звучит, как ''«фа жэ»'', что означает «излучение тепла». Таким образом, под «жаром» в данном случае следует понимать тепло, исходящее от тела пациента, ощущаемое врачом при пальпации. Тело пациента кажется горячим, в выраженных случаях это может быть даже чувство ожога при прикосновении; обычно исследуются лоб и тыл кистей, но не ладони (ладони же отражают скорее Пустой Жар).
В данном случае речь не собственно о температуре, которая определяется термометром. Термин, который переводится как жар, звучит, как ''«фа жэ»'', что означает «излучение тепла». Таким образом, под «жаром» в данном случае следует понимать тепло, исходящее от тела пациента, ощущаемое врачом при пальпации. Тело пациента кажется горячим, в выраженных случаях это может быть даже чувство ожога при прикосновении; обычно исследуются лоб и тыл кистей, но не ладони (ладони же отражают скорее Пустой Жар).
Строка 308: Строка 267:


== Примечания ==
== Примечания ==
{{примечания}}
<references />
 
{{ТКМ}}
{{ТКМ}}
[[Категория:Внешние причины болезни]]
[[Категория:Внешние причины болезни]]
[[Категория:Э]]
[[Категория:]]
[[Категория:Ревизия 2022.12.28‏‎]]
[[Категория:Ревизия 2019.07.20‏‎]]
Пожалуйста, учтите, что любой ваш вклад в проект «Altermed Wiki» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Amwiki:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!


Быстрая вставка: «» „“ | {{}} [[]] [] [[|]] {{|}} {{подст:}} <br> &nbsp; #REDIRECT [[]] [[Категория:]] {{DEFAULTSORT:}} [[Участник:]] {{u|}} {{ping|}} {{D-|}} [[d:|]] ~~~~

__NOTOC__ __TOC__ __FORCETOC__   [[ ()|]] [[ (фильм)|]] {{commonscat|}} [[wikt:]] [[Special:Diff/|]] [[Special:Permalink/|]] [[Special:Contributions/]]

Теги: <></> <!-- --> <blockquote></blockquote> <center></center> <code></code> <code><nowiki></nowiki></code> <gallery></gallery> <includeonly></includeonly> <math></math> <noinclude></noinclude> <nowiki></nowiki> <onlyinclude></onlyinclude> <poem></poem> <pre></pre> <s></s> <small></small> <syntaxhighlight lang=""></syntaxhighlight> <sub></sub> <sup></sup>

Разделы: == ==   === ===   === Итог ===  {{подст:Служебные разделы}}   == См. также ==   == Примечания == {{примечания}}  == Литература ==   == Ссылки ==

Шаблоны: {{tl|}} {{cl|}} {{clear}} {{lang-en|}} {{ref-en}} {{s|}} {{неоднозначность}} {{викифицировать}} {{переработать}} {{достоверность}} {{rq|}} {{div col}}{{div col end}} {{нет иллюстраций}} {{нарушение авторских прав|url=}} {{подст:L}} {{подст:предложение к удалению}} {{подст:короткая статья}} {{подст:перелить|}} {{закрыто}}{{закрыто-конец}} {{начало цитаты}}{{конец цитаты|источник=}} {{перенесено с||~~~~}} {{перенесено на||~~~~}} {{hello}}~~~~

Источники: <ref></ref> <ref name=""></ref> <ref name="" /> {{ref+||group=""}} {{подст:АИ}} {{подст:АИ2|}} {{подст:не АИ}} {{подст:отсутствие источников}} {{подст:отсутствие источников в разделе}} {{нет в источнике}}

Символы: ~ # @ § · ¡ ¿ \ ½ ¼ ¾ ± × ÷ ° ^ ¹ ² ³ £ ¥ $ ¢ © ® {{подст:ударение}}

Греческий алфавит: Α α Β β Γ γ Δ δ Ε ε Ζ ζ Η η Θ θ Ι Ϊ ι ϊ Κ κ Λ λ Μ μ Ν ν Ξ ξ Ο ο Π π Ρ ρ Σ σ ς Τ τ Υ Ϋ υ ϋ Φ φ Χ χ Ψ ψ Ω ω

Не копируйте тексты с других сайтов (исключения). Материалы, нарушающие авторские права, будут удалены. Убедитесь, что ваши правки основаны на данных, поддающихся проверке, и ссылайтесь на источники. Правьте смело, но для тестирования, пожалуйста, используйте «песочницу».